Exercices Series 1 (Introduction chapter)

J. Van herle STI-IGM GEM Group

Cl₂ / caustic soda NaOH electrolysis plant

a) From the 2 electrode half reactions occurring in the electrolysis of NaCl salt :

 2 Cl^2 \Leftrightarrow $\text{Cl}_2 + 2e^2$ (oxidation) $\text{E}^\circ = -1.36 \text{ V (vs NHE)}$

 $2 \text{ H}_2\text{O} + 2\text{e}^- \Leftrightarrow \text{H}_2 + 2 \text{ OH}^- \text{ (reduction)} \quad \text{E}^\circ = -0.83 \text{ V (vs NHE)}$

write down the full cell reaction starting from NaCl, remembering that NaCl and NaOH are in aqueous solution (Na⁺ aq, Cl⁻ aq., OH⁻ aq.)

NHE (Normal H_2 Electrode) is the absolute voltage scale we will introduce later.

b) From thermodynamic data tables, find the ΔH , ΔS and ΔG of this overall reaction, at 298K.

Compound	ΔH (formation) kJ/mol	S (formation) J/mol.K
H_2	0	130.6
Cl ₂	0	223
H ₂ O	-285.8	70
Na ⁺ aq.	-240.35	59
Cl ⁻ aq.	-167.08	56.5
OH ⁻ aq.	-230.015	-10.8

c) Calculate the minimal voltage to apply to start the electrolysis reaction.

- d) Verify how to link this voltage with the Gibbs free energy ΔG of the overall reaction, using Faraday's constant (F = 96'484 C/mol).
- e) In reality, around 3 V is applied. Derive the efficiency of the process.
- f) Where do you think the losses are?
- g) How many A (Amp) do you need to produce 1 kg Cl_2 in 1 hour? (molecular weight $Cl_2 = 70.9$ g/mol)
- h) Using the values above, what is the theoretical minimal energy to produce 1 kg Cl₂? And the effective energy, using 3 V?
- i) World Cl₂ production is 58 Mt Cl₂/yr. How much electricity does this consume in total? Compare this total electricity need to the world power production of 27'000 TWhe.

- j) The average capacity factor of a Cl₂/NaOH production plant is 80% (= 8760 h/yr x 0.8 = 7008 h operating hours per year). Derive from this what is the total worldwide power installed (GWe) for world annual Cl₂ production. Considering there are 650 plants, what is the average power and production per plant?
- k) Typical DC current applied in such a plant is 100'000 A for a current density of 0.25 A/cm². What is the active electrode area? And the number of cells in a plant?
- 1) How much H₂ as byproduct does such a plant produce per h ? Per yr ? Demonstrate your calculation by minimal 2 consistent approaches yielding the same result.
- m)Considering the LHV (lower heating value) of H₂ as 3.05 kWh/m³ or 33 kWh/kg, how much % energy is wasted in the process by not recovering the H₂? (It is usually vented!)
- n) Considering that the annual world total production of H₂ is 80 Mt / yr, of which only 4% is obtained through electrolysis processes, what is the share of the world annual Cl₂ electrolytic production in this? Do you think this is green H₂?